Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ingeniería
  • Computación e informática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ingeniería
  • Computación e informática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A user interaction bug analyzer based on image processing

artículo científico
Thumbnail
View/Open
Versión Final (1.097Mb)
Date
2016-08
Author
Méndez Porras, Abel
Alfaro Velásco, Jorge
Jenkins Coronas, Marcelo
Martínez Porras, Alexandra
Metadata
Show full item record
Abstract
Mobile applications support a set of user-interaction features that are independent of the application logic. Rotating the device, scrolling, or zooming are examples of such features. Some bugs in mobile applications can be attributed to user-interaction features. Objective: This paper proposes and evaluates a bug analyzer based on userinteraction features that uses digital image processing to find bugs. Method: Our bug analyzer detects bugs by comparing the similarity between images taken before and after a user-interaction. SURF, an interest point detector and descriptor, is used to compare the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed with SURF to obtain interest points, from which a similarity percentage was computed, to finally decide whether there was a bug. Results: We performed a total of 49 user-interaction feature tests. When manually testing the applications, 17 bugs were found, whereas when using image processing, 15 bugs were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated to user-interaction features. Our bug analyzer based on image processing was able to detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.
URI
https://hdl.handle.net/10669/73879
http://www.clei.org/cleiej/paper.php?id=357
Collections
  • Computación e informática [193]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.