Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Relativistic quantum kinematics in the Moyal representation

artículo científico
Thumbnail
View/Open
Versión preprint (341.1Kb)
Date
1990-03
Author
Cariñena Marzo, José F.
Gracia Bondía, José M.
Várilly Boyle, Joseph C.
Metadata
Show full item record
Abstract
In this paper, we obtain the phase-space quantization for relativistic spinning particles. The main tool is what we call a "Stratonovich-Weyl quantizer" which relates functions on phase space to operators on a suitable Hilbert space, and has the essential properties of covariance (under a group representation) and traciality. Our phase spaces are coadjoint orbits of the restricted Poincaré group; we compute and explicitly coordinatize the orbits corresponding to massive particles, with or without spin. Some orbits correspond to unitary irreducible representations of the Poincaré group; we show that there is a unique Stratonovich-Weyl quantizer from each of these phase spaces to operators on the corresponding representation spaces, and compute it explicitly. We develop the formalism by computing relativistic Wigner functions and twisted products for Klein-Gordon particles; these Wigner functions are supported on the mass shell. We thereby obtain an expression for the position probability density which is local, that is, free from the difficulty of supraluminal propagation of the usual position probability density. It is shown explicitly how observables on phase space may be quantized; for example, we prove that the canonical position coordinate corresponds to the Newton-Wigner position operator, irrespective of spin. We show how relativistic phase-space quantization applies to particles governed by the Dirac equation. In effect, we construct a Stratonovich-Weyl quantizer whose associated Hilbert space is the space of positive-energy solutions of the Dirac equation.
URI
https://hdl.handle.net/10669/87621
External link to the item
10.1088/0305-4470/23/6/015
https://iopscience-iop-org/article/10.1088/0305-4470/23/6/015
Collections
  • Matemática [191]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.