Universidad de Costa Rica
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo Depositar
  • Políticas
  • Contacto
    • español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
  •   Kérwá Home
  • Investigación
  • Ciencias básicas
  • Matemática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Faà di Bruno Hopf algebras

artículo científico
Thumbnail
View/Open
versión preprint (282.3Kb)
Date
2022-11
Author
Figueroa González, Héctor
Gracia Bondía, José M.
Várilly Boyle, Joseph C. 
Metadata
Show full item record
Abstract
This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure allows, among several other things, a short proof of the Lie-Scheffers theorem, and relating the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di~Bruno formulas with the theory of set partitions is developed in some detail.
 
Esta es una reseña corta sobre las fórmulas de Faà di Bruno, implementando composición de funciones analíticas reales, y algunas álgebras de Hopf asociadas a dichas fórmulas. Entre otras cosas, tal estructura permite una demostración corta del teorema de Lie y Scheffers, y establece la relación entre las fórmulas de inversión de Lagrange y los antípodas. Esta álgebra de Hopf es la subálgebra conmutativa maximal del álgebra introducida por Connes y Moscovici para estudiar difeomorfismos en el marco de la geometría no conmutativa. Asimismo, desarrollamos en cierto detalle el vínculo entre las fórmulas de Faà di Bruno y la teoría de particiones de conjuntos.
 
URI
https://hdl.handle.net/10669/87800
External link to the item
10.15446/recolma.v56n1.105611
https://revistas.unal.edu.co/index.php/recolma/article/view/105611
Collections
  • Matemática [185]



  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.
 

 

Browse

All of KérwáCommunities & CollectionsTitlesAuthorsSubjectsProcedenceTypeThis CollectionTitlesAuthorsSubjectsProcedenceType

My Account

LoginRegister

Statistics

View Usage Statistics

  • Repositorios universitarios

  • Repositorio del SIBDI-UCR
  • Biblioteca Digital del CIICLA
  • Repositorio Documental Rafael Obregón Loría (CIHAC)
  • Biblioteca Digital Carlos Melendez (CIHAC)
  • Repositorio de Fotografías
  • Colección de videos de UPA-VAS
  • Sitios recomendados

  • Buscador regional de LA Referencia
  • Buscador del Open ROAR
  • Scientific Electronic Library Online (SciELO)
  • Directory of Open Access Journals (DOAJ)
  • Redalyc
  • Redes sociales

  • facebook.com/repositoriokerwa
  • @Ciencia_UCR
  • Sobre Kérwá
  • Acceso Abierto
  • Cómo depositar
  • Políticas
Contact Us | Send Feedback
Repositorio Institucional de la Universidad de Costa Rica. Algunos derechos reservados. Este repositorio funciona con DSpace.