Síntesis de derivados bipiridínicos, terpiridínicos y porfirínicos con ácidos biliares para su uso como coadsorbentes, pares redox y colorantes en celdas de Grätzel
Loading...
Date
Authors
Ayerdis Ruiz, César Emanuel
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Las celdas solares sensibilizadas por colorante (DSSC) han surgido como una novedosa alternativa para promover el consumo de energía solar de forma accesible y económica. A pesar de que presentan buenas eficiencias, estos dispositivos presentan varios fenómenos moleculares que pueden afectar su desempeño y funcionamiento, conocidos como: agregación del colorante y recombinación del par redox. Estos fenómenos no deseados pueden ser suprimidos al utilizar aditivos moleculares llamados coadsorbentes. Los coadsorbentes por excelencia han sido los ácidos biliares debido a su naturaleza anfifílica. En este tipo de celdas, solo se ha estudiado la posibilidad de utilizar los ácidos biliares como coadsorbentes. Debido a esto, en este trabajo se estudió la posibilidad de desarrollar nuevos coadsorbentes, pares redox y colorantes con ácidos biliares en sus estructuras; para determinar posibles formas alternativas de suprimir la agregación y recombinación. En el capítulo 1, se sintetizó una nueva serie de coadsorbentes diméricos derivados de bipiridina. Estos coadsorbentes diméricos demostraron ser altamente efectivos, ya que la inserción de los grupos bipiridina incrementó notablemente la eficiencia en comparación a sus ácidos biliares respectivos sin modificaciones. Se observó que estos coadsorbentes fueron capaces de suprimir la agregación del colorante e incrementar con éxito la resistencia a la recombinación. El coadsorbente 4,4´-DA fue capaz de alcanzar una eficiencia de 3.9%, lo que equivale a un 92% de la eficiencia alcanzada con el ácido quenodesoxicólico. En el capítulo 2, se desarrollaron los primeros pares redox de cobalto con un ligando terpiridínico acoplado con ácidos biliares. También se desarrolló un nuevo par redox de cobalto sin ácidos biliares, Co(Phtpy)22+/3+, para comparar y determinar si la inserción de estas moléculas realmente es capaz de disminuir la recombinación. Los pares derivados de ácidos biliares presentaron eficiencias bajas en comparación a los otros pares redox estudiados debido a que presentaron limitaciones de difusión. Sin embargo, se observó que la inserción de los ácidos biliares en los pares redox suprime exitosamente el fenómeno de la recombinación, ya que las resistencias de transferencia de carga y los tiempos de vida de electrón incrementaron drásticamente. Además, se observó que Co(Phtpy)22+/3+ presentó una eficiencia mucho mayor que el ampliamente utilizado Co(Bpy)32+/3+, alcanzando una eficiencia de 5.6% bajo 0.1 soles de iluminación. En el capítulo 3, se prepararon una serie de colorantes porfirínicos derivados de ácidos biliares, para determinar si estas moléculas pueden controlar la agregación sin necesidad de coadsorbente y reducir la recombinación. Las propiedades optoelectrónicas de estas moléculas fueron apropiadas para las celdas solares. Sin embargo, las propiedades electroquímicas y electrónicas demostraron que los colorantes sintetizados no iban a ser eficientes en las DSSC. Debido a esto, no se estudió el desempeño de estas moléculas en estos dispositivos.
Dye-sensitized solar cells (DSSCs) have emerged as a novel alternative to promote solar energy consumption in an accessible and economical way. Although they present good efficiencies, these devices present several molecular phenomena that can affect their performance and operation, known as: dye aggregation and redox pair recombination. These undesirable phenomena can be suppressed by using molecular additives called coadsorbents. The most used and studied coadsorbents have been bile acids due to their amphiphilic nature. In this type of cells, only the possibility of using bile acids as coadsorbents has been studied. Due to this, in this work we studied the possibility of developing new coadsorbents, redox shuttles and dyes with bile acids in their structures; to determine possible alternative ways to suppress aggregation and recombination. In Chapter 1, a new series of bipyridine-derived dimeric coadsorbents were synthesized. These dimeric coadsorbents proved to be highly effective, as the insertion of the bipyridine groups markedly increased efficiency compared to their respective unmodified bile acids. It was observed that these coadsorbents were able to suppress dye aggregation and successfully increase recombination resistance. The 4,4'-DA coadsorbent was able to achieve an efficiency of 3.9%, which is equivalent to 92% of the efficiency achieved with chenodeoxycholic acid. In Chapter 2, the first cobalt redox shuttles with a terpyridine ligand coupled with bile acids were developed. A new cobalt redox shuttle without bile acids, Co(Phtpy)22+/3+, was also developed to compare and determine whether the insertion of these molecules is able to decrease recombination. The bile acid-derived pairs presented low efficiencies compared to the other redox shuttles studied because they presented diffusion limitations. However, it was observed that the insertion of bile acids into the redox shuttles successfully suppresses the recombination phenomenon, as the charge transfer resistances and electron lifetimes increased drastically. Moreover, it was observed that Co(Phtpy)22+/3+ exhibited much higher efficiency than the widely used Co(Bpy)32+/3+, reaching an efficiency of 5.6% under 0.1 suns of illumination. In Chapter 3, a series of porphyrinic dyes derived from bile acids were prepared to determine whether these molecules can control aggregation without coadsorbent and reduce recombination. The optoelectronic properties of these molecules were suitable for solar cells. However, the electrochemical and electronic properties showed that the synthesized dyes were not going to be efficient in DSSCs. Because of this, the performance of these molecules in these devices was not studied.
Dye-sensitized solar cells (DSSCs) have emerged as a novel alternative to promote solar energy consumption in an accessible and economical way. Although they present good efficiencies, these devices present several molecular phenomena that can affect their performance and operation, known as: dye aggregation and redox pair recombination. These undesirable phenomena can be suppressed by using molecular additives called coadsorbents. The most used and studied coadsorbents have been bile acids due to their amphiphilic nature. In this type of cells, only the possibility of using bile acids as coadsorbents has been studied. Due to this, in this work we studied the possibility of developing new coadsorbents, redox shuttles and dyes with bile acids in their structures; to determine possible alternative ways to suppress aggregation and recombination. In Chapter 1, a new series of bipyridine-derived dimeric coadsorbents were synthesized. These dimeric coadsorbents proved to be highly effective, as the insertion of the bipyridine groups markedly increased efficiency compared to their respective unmodified bile acids. It was observed that these coadsorbents were able to suppress dye aggregation and successfully increase recombination resistance. The 4,4'-DA coadsorbent was able to achieve an efficiency of 3.9%, which is equivalent to 92% of the efficiency achieved with chenodeoxycholic acid. In Chapter 2, the first cobalt redox shuttles with a terpyridine ligand coupled with bile acids were developed. A new cobalt redox shuttle without bile acids, Co(Phtpy)22+/3+, was also developed to compare and determine whether the insertion of these molecules is able to decrease recombination. The bile acid-derived pairs presented low efficiencies compared to the other redox shuttles studied because they presented diffusion limitations. However, it was observed that the insertion of bile acids into the redox shuttles successfully suppresses the recombination phenomenon, as the charge transfer resistances and electron lifetimes increased drastically. Moreover, it was observed that Co(Phtpy)22+/3+ exhibited much higher efficiency than the widely used Co(Bpy)32+/3+, reaching an efficiency of 5.6% under 0.1 suns of illumination. In Chapter 3, a series of porphyrinic dyes derived from bile acids were prepared to determine whether these molecules can control aggregation without coadsorbent and reduce recombination. The optoelectronic properties of these molecules were suitable for solar cells. However, the electrochemical and electronic properties showed that the synthesized dyes were not going to be efficient in DSSCs. Because of this, the performance of these molecules in these devices was not studied.
Description
Keywords
Celdas Solares Sensibilizadas por Colorante (DSSC), Energía solar
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution 4.0 International