Logo Kérwá
 

An experimental study on fundamental frequency detection in reverberated speech with pre-trained recurrent neural networks

dc.creatorAlfaro Picado, Andrei Fabian
dc.creatorSolís Cerdas, Stacy Daniela
dc.creatorCoto Jiménez, Marvin
dc.date.accessioned2022-03-24T16:20:53Z
dc.date.available2022-03-24T16:20:53Z
dc.date.issued2020
dc.descriptionPart of the Communications in Computer and Information Science book series (CCIS, volume 1087).es_ES
dc.description.abstractThe detection of the fundamental frequency (f0) in speech signals is relevant in areas such as automatic speech recognition and identification, with multiple potential applications. For example, in virtual assistants, assistive technology devices and biomedical applications. It has been acknowledged that the extraction of this parameter is affected in adverse conditions, for example, when reverberation or background noise is present. In this paper, we present a new method to improve the detection of the f0 in speech signals with reverberation, based on initialized Long Short-term Memory (LSTM) neural networks. In previous works, LSTM has used weights initialized with random numbers. We propose an initialization in the form of an auto-associative memory, which learns the identity function from non-reverberated data. The advantages of our proposal are shown using different objective quality measures, in particular, in the detection of segments with and without f0.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[322-B9-105]/UCR/Costa Ricaes_ES
dc.identifier.citationhttps://link.springer.com/chapter/10.1007/978-3-030-41005-6_24es_ES
dc.identifier.codproyecto322-B9-105
dc.identifier.doi10.1007/978-3-030-41005-6_24
dc.identifier.isbn978-3-030-41005-6
dc.identifier.urihttps://hdl.handle.net/10669/86275
dc.language.isoenges_ES
dc.sourceHigh Performance Computing (pp.355-368).Turrialba, Costa Rica: Springer, Chames_ES
dc.subjectDeep learninges_ES
dc.subjectFundamental frequencyes_ES
dc.subjectLong short-term memory (LSTM)es_ES
dc.subjectReverberationes_ES
dc.titleAn experimental study on fundamental frequency detection in reverberated speech with pre-trained recurrent neural networkses_ES
dc.typecomunicación de congresoes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Springer4.pdf
Size:
634.6 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: