Predicting Cancer Chemosensitivity Based on Intensity/Distribution Profiles of Cells Loaded with a Fluorescent Sphingolipid Analogue
dc.creator | Quirós Fernández, Isaac | |
dc.creator | Molina Mora, José Arturo | |
dc.creator | Kop Montero, Mariana | |
dc.creator | Salas Hidalgo, Elvira | |
dc.creator | Mora Rodríguez, Rodrigo Antonio | |
dc.date.accessioned | 2022-03-03T20:21:17Z | |
dc.date.available | 2022-03-03T20:21:17Z | |
dc.date.issued | 2018 | |
dc.description | Trabajo forma parte de los presentados en el International Work Conference on Bioinspired Intelligence (IWOBI).Estados Unidos, IEEE. 2018. | es_ES |
dc.description.abstract | Cancer is a group of heterogeneous and complex diseases, with limited therapeutic options due to the recurrent emergence of drug resistance. Sphingolipids are bioactive molecules that participate in signaling of cell death or proliferation. Because there is no laboratory test to rapidly predict a tumor chemosensitivity, we propose the use of a sphingomyelin fluorescent analogue as a chemotherapy response sensor. Through kinetic live cell imaging experiments, we extracted 1611 fluorescence features with single cell time resolved resolution. After comparing the variations in this reporter, induced by different chemotherapies, it was possible to reduce the system complexity to elaborate a decision tree algorithm based in only 3 fluorescence features capable of predicting chemosensitivity with a 73% of accuracy. This approach serves as a proof of principle for the possible future implementation of a chemosensitivity test that could be used with patient primary tumors, and thus contribute to personalized therapy against cancer. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET) | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiología | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicina | es_ES |
dc.identifier.citation | https://ieeexplore.ieee.org/document/8464199 | es_ES |
dc.identifier.doi | 10.1109/IWOBI.2018.8464199 | |
dc.identifier.isbn | 978-1-5386-7506-9 | |
dc.identifier.uri | https://hdl.handle.net/10669/85944 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso embargado | |
dc.source | 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI). IEEE Xplore, pp.1-8. | es_ES |
dc.subject | Chemosensitivity | es_ES |
dc.subject | Sphingolipids | es_ES |
dc.subject | Decision trees | es_ES |
dc.subject | CÁNCER | es_ES |
dc.title | Predicting Cancer Chemosensitivity Based on Intensity/Distribution Profiles of Cells Loaded with a Fluorescent Sphingolipid Analogue | es_ES |
dc.type | comunicación de congreso | es_ES |