Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra
dc.creator | Várilly Boyle, Joseph C. | |
dc.creator | Gracia Bondía, José M. | |
dc.date.accessioned | 2022-04-20T19:22:26Z | |
dc.date.available | 2022-04-20T19:22:26Z | |
dc.date.issued | 1988-06-04 | |
dc.description.abstract | The topology of the Moyal *-algebra may be defined in three ways: the algebra may be regarded as an operator algebra over the space of smooth declining functions either on the configuration space or on the phase space itself; or one may construct the *-algebra via a filtration of Hilbert spaces (or other Banach spaces) of distributions. We prove the equivalence of the three topologies thereby obtained. As a consequence, by filtrating the space of tempered distributions by Banach subspaces, we give new sufficient conditions for a phase-space function to correspond to a trace-class operator via the Weyl correspondence rule. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.description.sponsorship | Universidad de Costa Rica/[]/UCR/Costa Rica | es_ES |
dc.identifier.citation | https://aip.scitation.org/doi/10.1063/1.527984 | es_ES |
dc.identifier.doi | 10.1063/1.527984 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | https://hdl.handle.net/10669/86467 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso embargado | |
dc.source | Journal of Mathematical Physics, vol.29(4), pp.880-887. | es_ES |
dc.subject | Quantum mechanics in phase space | es_ES |
dc.subject | Tempered distributions | es_ES |
dc.subject | Locally convex spaces | es_ES |
dc.title | Algebras of distributions suitable for phase‐space quantum mechanics. II. Topologies on the Moyal algebra | es_ES |
dc.type | artículo original | es_ES |