Logo Kérwá
 

Gene expression analyses of gingival tissue of patients with periodontitis using public transcriptomic data

dc.creatorMolina Mora, José Arturo
dc.creatorCampos Sánchez, Rebeca
dc.creatorCastro Mora, Milena
dc.creatorSilva de la Fuente, Sandra Maria
dc.date.accessioned2023-05-12T21:12:49Z
dc.date.available2023-05-12T21:12:49Z
dc.date.issued2022-11
dc.description.abstractAbstract—Periodontal disease (PD) is a multifactorial and chronic condition of infection and inflammation of the gingival tissue. However, many of the biological and molecular mechanisms regarding the development of this disease remain unclear. To contribute to the understanding of PD, we developed a bioinformatic pipeline to identify differentially expressed genes (DEG) in public transcriptomic data from gingival tissue in patients with or without the disease, with subsequent analyses to characterize gene interactions and biological functions. After gene expression analysis, a total of 221 genes showed significant expression differences in gingival tissue from patients with periodontal condition compared to unaffected cases. In the annotation of the biological processes associated with these genes, a diversity of signal transduction and metabolic pathways were evidenced, highlighting those associated with immune response and extracellular matrix metabolism. In the interactome model with all the 221 differentially expressed genes, 17 were recognized as hub or central genes. Biological functions for hub genes resulted in line with the annotations for the whole network. Thus, these molecules are predicted to be useful as possible biomarkers for the periodontal condition. Further analyses are required to validate the possible role of these candidate genes as possible markers for diagnosis, prognosis, or therapeutic targets.es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Hematología y Trastornos Afines (CIHATA)es_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)es_ES
dc.description.sponsorshipUniversidad de Costa Rica/[801-B9-468]/UCR/Costa Ricaes_ES
dc.identifier.citationhttps://ieeexplore.ieee.org/abstract/document/10032477es_ES
dc.identifier.codproyecto801-B9-468
dc.identifier.doi10.1109/BIP56202.2022.10032477
dc.identifier.issn2473-2001
dc.identifier.urihttps://hdl.handle.net/10669/89249
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE 4th International Conference on BioInspired Processing (BIP). IEEE Group, Estados Unidos. 15-17 de noviembre de 2022es_ES
dc.subjectPeriodontal diseasees_ES
dc.subjectgene expressiones_ES
dc.subjecttranscriptomicses_ES
dc.subjectbioinformaticses_ES
dc.subjectsystem biologyes_ES
dc.titleGene expression analyses of gingival tissue of patients with periodontitis using public transcriptomic dataes_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3. Paper para BIP 2022 Periodontal v2.pdf
Size:
580.58 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections