Logo Kérwá
 

Robustness of LSTM neural networks for the enhancement of spectral parameters in noisy speech signals

dc.creatorCoto Jiménez, Marvin
dc.date.accessioned2022-03-24T16:57:54Z
dc.date.available2022-03-24T16:57:54Z
dc.date.issued2019
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 11289).es_ES
dc.description.abstractIn this paper, we carry out a comparative performance analysis of Long Short-term Memory (LSTM) Neural Networks for the task of noise reduction. Recent work in this area has shown the advantages of this kind of network for the enhancement of noisy speech, particularly when the training process is performed for specific Signal-to-Noise (SNR) levels. For application in real-life environments, it is important to test the robustness of the approach without the a priori knowledge of the SNR noise levels, as classical signal processing-based algorithms do. In our experiments, we conduct the training stage with single and multiple noise conditions and perform the comparison of the results with the specific SNR training presented previously in the literature. For the first time, results give a measure on the independence of the training conditions for the task of noise suppression in speech signals, and shows remarkable robustness of the LSTM for different SNR levels.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.identifier.citationhttps://link.springer.com/chapter/10.1007/978-3-030-04497-8_19es_ES
dc.identifier.doi10.1007/978-3-030-04497-8_19
dc.identifier.isbn978-3-030-04497-8
dc.identifier.urihttps://hdl.handle.net/10669/86282
dc.language.isoenges_ES
dc.sourceAdvances in Computational Intelligence (pp.227-238).Guadalajara, Mexico: Springer, Chames_ES
dc.subjectDeep learninges_ES
dc.subjectLong short-term memory (LSTM)es_ES
dc.subjectMel-Frequency Cepstrum Coefficients (MFCC)es_ES
dc.subjectNEURAL NETWORKSes_ES
dc.subjectSpeech enhancementes_ES
dc.titleRobustness of LSTM neural networks for the enhancement of spectral parameters in noisy speech signalses_ES
dc.typecomunicación de congresoes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robustness.pdf
Size:
350.05 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: