Formulation and analysis of fully-mixed methods for stress-assisted diffusion problems
dc.creator | Gatica Pérez, Gabriel Nibaldo | |
dc.creator | Gómez Vargas, Bryan Andrés | |
dc.creator | Ruiz Baier, Ricardo | |
dc.date.accessioned | 2022-04-19T14:47:53Z | |
dc.date.available | 2022-04-19T14:47:53Z | |
dc.date.issued | 2019-03 | |
dc.description.abstract | This paper is devoted to the mathematical and numerical analysis of a mixed-mixed PDE system describing the stress-assisted diffusion of a solute into an elastic material. The equations of elastostatics are written in mixed form using stress, rotation and displacements, whereas the diffusion equation is also set in a mixed three-field form, solving for the solute concentration, for its gradient, and for the diffusive flux. This setting simplifies the treatment of the nonlinearity in the stress-assisted diffusion term. The analysis of existence and uniqueness of weak solutions to the coupled problem follows as combination of Schauder and Banach fixed-point theorems together with the Babuška–Brezzi and Lax–Milgram theories. Concerning numerical discretization, we propose two families of finite element methods, based on either PEERS or Arnold–Falk–Winther elements for elasticity, and a Raviart–Thomas and piecewise polynomial triplet approximating the mixed diffusion equation. We prove the well-posedness of the discrete problems, and derive optimal error bounds using a Strang inequality. We further confirm the accuracy and performance of our methods through computational tests. | es_ES |
dc.description.procedence | UCR::Sedes Regionales::Sede de Occidente | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.description.sponsorship | Comisión Nacional de Investigación Científica y Tecnológica/[AFB170001]/CONICYT/Chile | es_ES |
dc.description.sponsorship | Becas-Chile Programme/[21170275]//Chile | es_ES |
dc.description.sponsorship | Universidad de Concepción/[]//Chile | es_ES |
dc.description.sponsorship | Engineering and Physical Sciences Research Council/[EP/R00207X/1]/EPSRC/Reino Unido | es_ES |
dc.identifier.doi | 10.1016/j.camwa.2018.11.008 | |
dc.identifier.issn | 0898-1221 | |
dc.identifier.uri | https://hdl.handle.net/10669/86448 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso embargado | |
dc.source | Computers & Mathematics with Applications, vol.77(5), pp.1312-1330. | es_ES |
dc.subject | A priori error analysis | es_ES |
dc.subject | Augmented fully-mixed formulation | es_ES |
dc.subject | Stress-diffusion coupling | es_ES |
dc.subject | Finite element methods | es_ES |
dc.subject | Fixed-point theory | es_ES |
dc.title | Formulation and analysis of fully-mixed methods for stress-assisted diffusion problems | es_ES |
dc.type | artículo original | es_ES |