The Dirac operator on SU_q(2)
dc.creator | Dabrowski, Ludwik | |
dc.creator | Landi, Giovanni | |
dc.creator | Sitarz, Andrzej | |
dc.creator | Van Suijlekom, Walter | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-04-18T21:40:52Z | |
dc.date.available | 2023-04-18T21:40:52Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We construct a 3^+ summable spectral triple (A(SU_q(2)),H,D) over the quantum group SU_q(2) which is equivariant with respect to a left and a right action of U_q(su(2)). The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.identifier.citation | https://link.springer.com/article/10.1007/s00220-005-1383-9 | es_ES |
dc.identifier.doi | 10.1007/s00220-005-1383-9 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.uri | https://hdl.handle.net/10669/89094 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Communications in Mathematical Physics, (259), pp.729-759 | es_ES |
dc.subject | GEOMETRY | es_ES |
dc.subject | MATHEMATICS | es_ES |
dc.title | The Dirac operator on SU_q(2) | es_ES |
dc.type | artículo original | es_ES |