Logo Kérwá
 

On the dynamics of a quadratic Schrödinger system in dimension n = 5

dc.creatorNoguera Salgado, Norman F.
dc.creatorPastor Ferreira, Ademir
dc.date.accessioned2024-08-05T17:34:07Z
dc.date.available2024-08-05T17:34:07Z
dc.date.issued2018-10-02
dc.description.abstractIn this work we give a sharp criterion for the global well-posedness, in the energy space, for a system of nonlinear Schr¨odinger equations with quadratic interaction in dimension n = 5. The criterion is given in terms of the charge and energy of the ground states associated with the system, which are obtained by minimizing a Weinstein-type functional. The main result is then obtained in view of a sharp Gagliardo-Nirenberg-type inequality.
dc.description.procedenceSede de Occidentees_ES
dc.identifier.citationhttps://intlpress.com/site/pub/pages/journals/items/dpde/content/vols/0017/0001/a001/index.phpes_ES
dc.identifier.doi10.4310/DPDE.2020.v17.n1.a1
dc.identifier.issn2163-7873
dc.identifier.issn1548-159X
dc.identifier.urihttps://hdl.handle.net/10669/91940
dc.language.isoenges_ES
dc.rightsacceso abierto
dc.sourceDynamics of Partial Different Equations, 17(1)
dc.subjectGlobal well-posedness
dc.subjectSchrödinger systems
dc.subjectblow up
dc.subjectGround states solutions
dc.titleOn the dynamics of a quadratic Schrödinger system in dimension n = 5es_ES
dc.typeartículo original

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections