Uniform sparse bounds for discrete quadratic phase Hilbert transforms
Fecha
2017-09
Autores
Kesler, Robert
Mena Arias, Darío Alberto
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported
functions
$$
H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}.
$$
We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$.
The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes.
Descripción
Palabras clave
Discrete analysis, Quadratic phase, Sparse bounds, Hilbert transform, 515.733 Espacios de Hilbert
Citación
https://link.springer.com/article/10.1007/s13324-017-0195-3