Uniform sparse bounds for discrete quadratic phase Hilbert transforms

Fecha

2017-09

Autores

Kesler, Robert
Mena Arias, Darío Alberto

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen

Consider the discrete quadratic phase Hilbert Transform acting on $\ell^{2}(\mathbb{Z})$ finitely supported functions $$ H^{\alpha} f(n) : = \sum_{m \neq 0} \frac{e^{i\alpha m^2} f(n - m)}{m}. $$ We prove that, uniformly in $\alpha \in \bT$, there is a sparse bound for the bilinear form $\inn{H^{\alpha} f}{g}$. The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse H\"older classes.

Descripción

Palabras clave

Discrete analysis, Quadratic phase, Sparse bounds, Hilbert transform, 515.733 Espacios de Hilbert

Citación

https://link.springer.com/article/10.1007/s13324-017-0195-3

Colecciones