Fourier analysis on the affine group, quantization and noncompact Connes geometries
dc.creator | Gayral, Victor | |
dc.creator | Gracia Bondía, José M. | |
dc.creator | Várilly Boyle, Joseph C. | |
dc.date.accessioned | 2023-05-09T20:54:38Z | |
dc.date.available | 2023-05-09T20:54:38Z | |
dc.date.issued | 2008-04 | |
dc.description.abstract | We find the Stratonovich-Weyl quantizer for the nonunimodular affine group of the line. A noncommutative product of functions on the half-plane, underlying a noncompact spectral triple in the sense of Connes, is obtained from it. The corresponding Wigner functions reproduce the time-frequency distributions of signal processing. The same construction leads to scalar Fourier transformations on the affine group, simplifying and extending the Fourier transformation proposed by Kirillov. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemática | es_ES |
dc.identifier.citation | https://ems.press/journals/jncg/articles/1466 | es_ES |
dc.identifier.doi | 10.4171/JNCG/20 | |
dc.identifier.issn | 1661-6952 | |
dc.identifier.issn | 1661-6960 | |
dc.identifier.uri | https://hdl.handle.net/10669/89212 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Journal of Noncommutative Geometry, Vol.2, pp. 215-261 | es_ES |
dc.subject | cuantización de Moyal | es_ES |
dc.subject | geometría no conmutativa | es_ES |
dc.subject | transformada de Fourier | es_ES |
dc.title | Fourier analysis on the affine group, quantization and noncompact Connes geometries | es_ES |
dc.type | artículo original | es_ES |