Logo Kérwá
 

The asymptotic distribution of Andrews’ smallest parts function

dc.creatorBanks, Josiah
dc.creatorBarquero Sánchez, Adrián Alberto
dc.creatorMasri, Riad
dc.creatorSheng, Yan
dc.date.accessioned2019-01-24T19:48:25Z
dc.date.available2019-01-24T19:48:25Z
dc.date.issued2015-12
dc.description.abstractIn this paper, we use methods from the spectral theory of automorphic forms to give an asymptotic formula with a power saving error term for Andrews’ smallest parts function spt(n). We use this formula to deduce an asymptotic formula with a power saving error term for the number of 2-marked Durfee symbols associated to partitions of n. Our method requires that we count the number of Heegner points of discriminant −D < 0 and level N inside an “expanding” rectangle contained in a fundamental domain for Γ0(N).es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Matemáticaes_ES
dc.identifier.citationhttps://link.springer.com/article/10.1007/s00013-015-0831-9
dc.identifier.doi10.1007/s00013-015-0831-9
dc.identifier.issn1420-8938
dc.identifier.urihttps://hdl.handle.net/10669/76492
dc.language.isoen_USes_ES
dc.rightsTodos los derechos reservados*
dc.sourceArchiv der Mathematik, vol.105(6), pp. 539–555.es_ES
dc.subjectDurfee symboles_ES
dc.subjectPartitiones_ES
dc.subjectSmallest parts functiones_ES
dc.titleThe asymptotic distribution of Andrews’ smallest parts functiones_ES
dc.typeversión final del autor
dc.typeartículo original

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
spt-9-4-15.pdf
Size:
430.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.83 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections