2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy, CPU Usage, and Memory Usage
dc.creator | Trejos Vargas, Kevin Francisco | |
dc.creator | Rincón Riveros, Laura Camila | |
dc.creator | Bolaños Torres, Miguel Eduardo | |
dc.creator | Fallas Pizarro, José Ariel | |
dc.creator | Marín Paniagua, Leonardo José | |
dc.date.accessioned | 2022-05-16T20:03:00Z | |
dc.date.available | 2022-05-16T20:03:00Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The present work proposes a method to characterize, calibrate, and compare, any 2D SLAM algorithm, providing strong statistical evidence, based on descriptive and inferential statistics to bring confidence levels about overall behavior of the algorithms and their comparisons. This work focuses on characterize, calibrate, and compare Cartographer, Gmapping, HECTOR-SLAM, KARTO-SLAM, and RTAB-Map SLAM algorithms, there were four metrics in place, these are pose error, map accuracy, CPU usage, and memory usage, from these four metrics, to characterize them, Plackett-Burman and factorial experiments were performed, and enhancement after characterization and calibration was granted by using hypothesis tests besides central limit theorem. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctrica | es_ES |
dc.description.sponsorship | Universidad de Costa Rica/[322-B8-298]/UCR/Costa Rica | es_ES |
dc.description.sponsorship | Universidad de Costa Rica/[322-C0-611]/UCR/Costa Rica | es_ES |
dc.identifier.codproyecto | 322-B8-298 | |
dc.identifier.codproyecto | 322-C0-611 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | https://hdl.handle.net/10669/86591 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso abierto | |
dc.source | Sensors, vol.22, pp.1-37. | es_ES |
dc.subject | 2D SLAM | es_ES |
dc.subject | SLAM calibration | es_ES |
dc.subject | ROS | es_ES |
dc.subject | GAZEBO | es_ES |
dc.subject | Cartographer | es_ES |
dc.subject | Gmapping | es_ES |
dc.subject | HECTOR-SLAM | es_ES |
dc.subject | KARTO-SLAM | es_ES |
dc.subject | RTAB-Map | es_ES |
dc.subject | APE | es_ES |
dc.subject | Knn-Search | es_ES |
dc.subject | Plackett-Burman | es_ES |
dc.title | 2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy, CPU Usage, and Memory Usage | es_ES |
dc.type | artículo original | es_ES |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Sensors_Article_accepted.pdf
- Tamaño:
- 8.9 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Versión postprint
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.5 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: