Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress
dc.creator | Nikel Mayer, Pablo Iván | |
dc.creator | Fuhrer, Tobias | |
dc.creator | Chavarría Vargas, Max | |
dc.creator | Sánchez Pascuala, Alberto | |
dc.creator | Sauer, Uwe | |
dc.creator | de Lorenzo, Víctor | |
dc.date.accessioned | 2022-07-05T17:42:33Z | |
dc.date.available | 2022-07-05T17:42:33Z | |
dc.date.issued | 2021-01-11 | |
dc.description.abstract | As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation— the metabolic currency that fuels redox-stress quenching mechanisms—were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults—some of which end up in the formation of reactive oxygen species—but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering. | es_ES |
dc.description.procedence | UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA) | es_ES |
dc.description.sponsorship | The Novo Nordisk Foundation///Noruega | es_ES |
dc.description.sponsorship | European Union’s Horizon 2020 Research and Innovation Programme/[814418]//Unión Europea | es_ES |
dc.description.sponsorship | Danish Council for Independent Research///Dinamarca | es_ES |
dc.description.sponsorship | Madonna University/[H2020-FET-OPEN-RIA-2017-1-766975]/MADONNA/Estados Unidos | es_ES |
dc.description.sponsorship | BioRoboost/[H2020-NMBP-BIO-CSA-2018]//Unión Europea | es_ES |
dc.description.sponsorship | SynBio4Flav/[H2020-NMBP/0500]//Unión Europea | es_ES |
dc.description.sponsorship | Mix-Up: Contracts of European Union/[H2020-Grant 870294]/MIX-UP/Unión Europea | es_ES |
dc.description.sponsorship | Comunidad Autónoma de Madrid/[S2017/BMD-3691 InGEMICS-CM]//España | es_ES |
dc.identifier.citation | https://www.nature.com/articles/s41396-020-00884-9 | es_ES |
dc.identifier.doi | https://doi.org/10.1038/s41396-020-00884-9 | |
dc.identifier.issn | 1751-7370 | |
dc.identifier.uri | https://hdl.handle.net/10669/86894 | |
dc.language.iso | eng | es_ES |
dc.rights | acceso embargado | |
dc.source | The ISME Journal; Núm. 15: 2021 pp. 1751-1766 | es_ES |
dc.subject | Pseudomonas putida | es_ES |
dc.subject | Bacterium | es_ES |
dc.subject | Bioremediation | es_ES |
dc.title | Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress | es_ES |
dc.type | artículo original | es_ES |