Estructuras de orden para aplicaciones matriciales
Loading...
Files
Date
Authors
Várilly Boyle, Joseph C.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Si M(n) es el espacio de matrices n x n complejas, hay varias
estructuras de orden en End(M(n)), el espacio de sus endomorfismos.
Hay nociones de positividad, positividad fuerte y positividad
completa, que son en general inequivalentes. Se indica cómo
caracterizar estas estructuras mediante ciertos conos convexos
en M(n^2); la estructura de orden es bastante compleja y aun en el
caso n = 3 deja problemas abiertos.
If M(n) is the space of n x n complex matrices, there are several order structures on its space of endomorphisms End(M(n)). We encounter notions of positivity, strong positivity and complete positivity, which are in general inequivalent. We show how to characterize these order structures using certain convex cones in M(n^2); the order structure is quite complex and even in the case n = 3 there remain open problems.
If M(n) is the space of n x n complex matrices, there are several order structures on its space of endomorphisms End(M(n)). We encounter notions of positivity, strong positivity and complete positivity, which are in general inequivalent. We show how to characterize these order structures using certain convex cones in M(n^2); the order structure is quite complex and even in the case n = 3 there remain open problems.
Description
Keywords
Matrices positivas, Matriz (matemáticas)
Citation
https://revistas.ucr.ac.cr/index.php/cienciaytecnologia