Logo Kérwá
 

Hybrid speech enhancement with wiener filters and deep LSTM denoising autoencoders

dc.creatorCoto Jiménez, Marvin
dc.creatorGoddard Close, John
dc.creatorDi Persia, Leandro
dc.creatorRuffiner, Hugo Leonardo
dc.date.accessioned2022-03-25T21:06:13Z
dc.date.available2022-03-25T21:06:13Z
dc.date.issued2018
dc.description.abstractOver the past several decades, numerous speech enhancement techniques have been proposed to improve the performance of modern communication devices in noisy environments. Among them, there is a large range of classical algorithms (e.g. spectral subtraction, Wiener filtering and Bayesian-based enhancement), and more recently several deep neural network-based. In this paper, we propose a hybrid approach to speech enhancement which combines two stages: In the first stage, the well-known Wiener filter performs the task of enhancing noisy speech. In the second stage, a refinement is performed using a new multi-stream approach, which involves a collection of denoising autoencoders and auto-associative memories based on Long Short-term Memory (LSTM) networks. We carry out a comparative performance analysis using two objective measures, using artificial noise added at different signal-to-noise levels. Results show that this hybrid system improves the signal's enhancement significantly in comparison to the Wiener filtering and the LSTM networks separately.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctricaes_ES
dc.identifier.citationhttps://ieeexplore.ieee.org/abstract/document/8464132es_ES
dc.identifier.doi10.1109/IWOBI.2018.8464132
dc.identifier.urihttps://hdl.handle.net/10669/86294
dc.language.isoenges_ES
dc.sourceIEEE International Work Conference on Bioinspired Intelligence (IWOBI). San Carlos, Costa Rica. 18-20 de julio de 2018es_ES
dc.subjectDeep learninges_ES
dc.subjectDenoising autoencoderses_ES
dc.subjectLong short-term memory (LSTM)es_ES
dc.subjectSignal processinges_ES
dc.titleHybrid speech enhancement with wiener filters and deep LSTM denoising autoencoderses_ES
dc.typecomunicación de congresoes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sinc_CGDR18.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description: