Logo Kérwá
 

ohun: An R package for diagnosing and optimizing automatic sound event detection

dc.creatorAraya Salas, Marcelo
dc.creatorSmith Vidaurre, Grace
dc.creatorChaverri Echandi, Gloriana
dc.creatorBrenes Sáenz, Juan Carlos
dc.creatorChirino Fernández, Fabiola María
dc.creatorElizondo Calvo, Jorge
dc.creatorRico Guevara, Alejandro
dc.date.accessioned2024-05-31T20:28:08Z
dc.date.available2024-05-31T20:28:08Z
dc.date.issued2023
dc.description.abstract1. Animal acoustic signals are widely used in diverse research areas due to the relative ease with which sounds can be registered across a wide range of taxonomic groups and research settings. However, bioacoustics research can quickly generate large data sets, which might prove challenging to analyse promptly. Although many tools are available for the automated detection of sounds, choosing the right approach can be difficult and only a few tools provide a framework for evaluating detection performance. 2. Here, we present ohun, an R package intended to facilitate automated sound event detection. ohun provides functions to diagnose and optimize detection routines, compare performance among different detection approaches and evaluate the accuracy in inferring the temporal location of events. 3. The package uses reference annotations containing the time position of target sounds in a training data set to evaluate detection routine performance using common signal detection theory indices. This can be done both with routine outputs imported from other software and detections run within the package. The package also provides functions to organize acoustic data sets in a format amenable to detection analyses. In addition, ohun includes energy-based and template-based detection methods, two commonly used automatic approaches in bioacoustics research. 4. We show how ohun can be used to automatically detect vocal signals with case studies of adult male zebra finch Taenopygia gutata songs and Spix's disc-winged bat Thyroptera tricolor ultrasonic social calls. We also include examples of how to evaluate the detection performance of ohun and external software. Finally, we provide some general suggestions to improve detection performance.es_ES
dc.description.procedenceUCR::Sedes Regionales::Sede del Sures_ES
dc.description.procedenceUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Neurociencias (CIN)es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologíaes_ES
dc.description.sponsorshipUniversidad de Costa Rica/[837-C0-754]/UCR/Costa Ricaes_ES
dc.identifier.codproyecto837-C0-754
dc.identifier.doi10.1111/2041-210X.14170
dc.identifier.issn2041-210X
dc.identifier.urihttps://hdl.handle.net/10669/91496
dc.language.isoenges_ES
dc.rightsacceso abiertoes_ES
dc.sourceMethods in Ecology and Evolution, vol.14 (9), pp.2259-2271es_ES
dc.subjectBIOACOUSTICSes_ES
dc.subjectANIMAL VOCALIZATIONSes_ES
dc.subjectACOUSTICSes_ES
dc.subjectANIMALSes_ES
dc.titleohun: An R package for diagnosing and optimizing automatic sound event detectiones_ES
dc.typeartículo originales_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Methods Ecol Evol - 2023 - Araya‐Salas - ohun An R package for diagnosing and optimizing automatic sound event detection-1.pdf
Size:
5.65 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.5 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections