Producción de pepino (Cucumis sativus L.) bajo invernadero: correlaciones entre variables
Loading...
Date
Authors
Chacón Padilla, Karla
Monge Pérez, José Eladio
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Se establecieron correlaciones de Pearson para 14 genotipos de pepino producidos bajo invernadero, entre siete variables cuantitativas: longitud del fruto (cm), diámetro del fruto (mm), peso del fruto (g), número de frutos por planta, rendimiento total y comercial (kg/m2), y porcentaje de sólidos solubles totales (°Brix). Se presentaron ocho correlaciones de Pearson evaluadas en los 14 genotipos que fueron altas (r≥0,66) y con significancia estadística (p≤0,05), en cuyo caso se obtuvieron las regresiones lineales: longitud y peso del fruto (r=0,92); diámetro y peso del fruto (r=0,66); peso del fruto y número total de frutos por planta (r=-0,84); diámetro del fruto y número total de frutos por planta (r=-0,77); diámetro del fruto y porcentaje de sólidos solubles totales (r=0,69); número total de frutos por planta y porcentaje de sólidos solubles totales (r=-0,67); longitud del fruto y número total de frutos por planta (r=-0,72); y rendimiento total y comercial (r=0,81). Además, se obtuvieron otras cuatro correlaciones altas y con significancia estadística, según el tipo de pepino (largo, mediano o pequeño): rendimiento total y comercial; número total de frutos por planta y rendimiento total; número total de frutos por planta y rendimiento comercial; y, únicamente para el pepino tipo pequeño, entre diámetro del fruto y porcentaje de sólidos solubles totales. Se concluye que el tipo de pepino incluido en el análisis, influye de manera importante en el resultado de las correlaciones. El número total de frutos por planta se debe considerar una característica esencial en el fitomejoramiento para el rendimiento en pepino.
For 14 cucumber genotypes grown under greenhouse conditions the researchers estimated Pearson correlations between seven quantitative variables: fruit length (cm), fruit width (mm), fruit weight (g), number of fruits per plant, total and commercial yield (kg/m2), and percentage of total soluble solids (°Brix). Among the 14 evaluated genotypes there were eight Pearson correlations that were high (r≥0,66) and statistically significant (p≤0,05). In those cases the linear regression statistics were calculated: fruit length and weight (r=0,92); fruit width and weight (r=0,66); fruit weight and number of fruits per plant (r=-0,84); fruit width and number of fruits per plant (r=-0,77); fruit width and percentage of total soluble solids (r=0,69); number of fruits per plant and percentage of total soluble solids (r=-0,67); fruit length and number of fruits per plant (r=-0,72); and total and commercial yield (r=0,81). Statistically significant correlations were also observed in four additional cases, not across all genotypes but estimated according to the type of cucumber (long, medium or small): total and commercial yield; number of fruits per plant and total yield; number of fruits per plant and commercial yield. And, only for the small cucumber type, there were significant correlations between fruit width and percentage of total soluble solids. It is concluded that the cucumber type included in the analysis has a large effect in the correlation results. The number of fruits per plant should be considered an essential characteristic for yield breeding in cucumber.
For 14 cucumber genotypes grown under greenhouse conditions the researchers estimated Pearson correlations between seven quantitative variables: fruit length (cm), fruit width (mm), fruit weight (g), number of fruits per plant, total and commercial yield (kg/m2), and percentage of total soluble solids (°Brix). Among the 14 evaluated genotypes there were eight Pearson correlations that were high (r≥0,66) and statistically significant (p≤0,05). In those cases the linear regression statistics were calculated: fruit length and weight (r=0,92); fruit width and weight (r=0,66); fruit weight and number of fruits per plant (r=-0,84); fruit width and number of fruits per plant (r=-0,77); fruit width and percentage of total soluble solids (r=0,69); number of fruits per plant and percentage of total soluble solids (r=-0,67); fruit length and number of fruits per plant (r=-0,72); and total and commercial yield (r=0,81). Statistically significant correlations were also observed in four additional cases, not across all genotypes but estimated according to the type of cucumber (long, medium or small): total and commercial yield; number of fruits per plant and total yield; number of fruits per plant and commercial yield. And, only for the small cucumber type, there were significant correlations between fruit width and percentage of total soluble solids. It is concluded that the cucumber type included in the analysis has a large effect in the correlation results. The number of fruits per plant should be considered an essential characteristic for yield breeding in cucumber.
Description
Keywords
Cucumis sativus, Correlación de Pearson, Regresión lineal, Rendimiento, Número de frutos por planta, Pearson correlation, Linear regression, Yield, Number of fruits per plant
Citation
https://revistas.uned.ac.cr/index.php/posgrado/article/view/2291