La Ecuación de Hill con Potencial Irregular
Archivos
Fecha
2012-03-29 00:00:00
Autores
Cambronero, Santiago
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
We consider the Hill equation whose potential is the formal derivative of a Hölder – continuous function of parameter \theta \in (0,1), and show that solutions of the discrete version converge to solutions of the original equation in a suitable way. This fact is used to establish existence and uniqueness theorems for this singular case, and to deduce some properties of solutions and the discriminant of the studied equation.
Se considera la ecuación de Hill cuyo potencial es la derivada formal de una función Hölder - continua de parámetro \theta \in (0,1) y se muestra que las soluciones de la versión discreta correspondiente convergen adecuadamente a las soluciones de la ecuación original. Este hecho se usa para establecer teoremas de existencia de soluciones para este caso singular y para deducir algunas propiedades de las soluciones y el discriminante de la ecuación estudiada.
Se considera la ecuación de Hill cuyo potencial es la derivada formal de una función Hölder - continua de parámetro \theta \in (0,1) y se muestra que las soluciones de la versión discreta correspondiente convergen adecuadamente a las soluciones de la ecuación original. Este hecho se usa para establecer teoremas de existencia de soluciones para este caso singular y para deducir algunas propiedades de las soluciones y el discriminante de la ecuación estudiada.
Descripción
Palabras clave
Citación
http://revistas.ucr.ac.cr/index.php/matematica/article/view/125