Logo Kérwá
 

Chandler wobble: Stochastic and deterministic dynamics

dc.creatorJenkins Villalobos, Alejandro
dc.date.accessioned2017-01-16T13:52:17Z
dc.date.available2017-01-16T13:52:17Z
dc.date.issued2016-09-18
dc.descriptionPresented at the 13th International Conference, Dynamical Systems - Theory and Applications (DSTA '2015), Lodz, Poland, 7-10 Dec. 2015es_ES
dc.description.abstractWe propose a model of the Earth’s torqueless precession, the “Chandler wobble,” as a self-oscillation driven by positive feedback between the wobble and the centrifugal deformation of the portion of the Earth’s mass contained in circulating fluids. The wobble may thus run like a heat engine, extracting energy from heat-powered geophysical circulations whose natural periods would otherwise by unrelated to the wobble’s observed period of about fourteen months. This can explain, more plausibly than previous models based on stochastic perturbations or forced resonance, how the wobble is maintained against viscous dissipation. The self-oscillation is a deterministic process, but stochastic variations in the magnitude and distribution of the circulations may turn off the positive feedback (a Hopf bifurcation), accounting for the occasional extinctions, followed by random phase jumps, seen in the data. This model may have implications for broader questions about the relation between stochastic and deterministic dynamics in complex systems, and the statistical analysis thereof.es_ES
dc.description.procedenceUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físicaes_ES
dc.identifier.citationhttp://link.springer.com/chapter/10.1007%2F978-3-319-42408-8_15
dc.identifier.doi10.1007/978-3-319-42408-8_15es_ES
dc.identifier.isbn978-3-319-42407-1
dc.identifier.isbn978-3-319-42408-8
dc.identifier.urihttps://hdl.handle.net/10669/29419
dc.language.isoen_USes_ES
dc.rightsacceso abierto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cr/es_ES
dc.sourceJenkins A. (2016) Chandler Wobble: Stochastic and Deterministic Dynamics. In: Awrejcewicz J. (eds) Dynamical Systems: Theoretical and Experimental Analysis. Springer Proceedings in Mathematics & Statistics, vol 182. Springer, Chames_ES
dc.subjectChandler wobblees_ES
dc.subjectself-oscillationes_ES
dc.subjectHopf bifurcationes_ES
dc.subjectclassical mechanicses_ES
dc.titleChandler wobble: Stochastic and deterministic dynamicses_ES
dc.typecomunicación de congreso

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chandler-arxiv-v2.pdf
Size:
322.29 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.38 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections