Logo Kérwá
 

Minimization of the first eigenvalue in problems involving the bi-laplacian

Loading...
Thumbnail Image

Authors

Anedda, Claudia
Cuccu, Fabrizio
Porru, Giovanni

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This paper concerns the minimization of the first eigenvalue in problems involvingthe bi-Laplacian under either homogeneous Navier boundary conditions or homogeneousDirichlet boundary conditions. Physically, in case of N = 2, our equation modelsthe vibration of a non homogeneous plate  which is either hinged or clamped alongthe boundary. Given several materials (with different densities) of total extension ||,we investigate the location of these materials inside  so to minimize the first modein the vibration of the corresponding plate.Keywords: bi-Laplacian, first eigenvalue, minimization.
Este art´?culo trata de la minimizaci´on del primer autovalor en problemas relativosal bi-Laplaciano bajo condiciones de frontera homog´eneas de tipo Navier o Dirichlet.F´?sicamente, en el problema bi-dimensional, nuestra ecuacin modela la vibraci´on deuna placa inhomog´enea  fija con goznes a lo largo de su borde. Dados varios materiales(de diferentes densidades) y extensi´on total ||, investigamos cu´al debe serla localizaci´on de tales materiales en la placa para minimizar el primer modo de suvibraci´on.Palabras clave: bi-Laplaciano, primer autovalor, minimizaci´on.

Description

Keywords

Citation

http://revistas.ucr.ac.cr/index.php/matematica/article/view/1422

Endorsement

Review

Supplemented By

Referenced By